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Abstract
The magnetic systems described by a two-spin-per-site Heisenberg-like
Hamiltonian are investigated in detail. When there are two sub-spins in one
site, the magnetic behaviour becomes more complicated than usual Heisenberg
systems due to the internal spin fluctuation. Spontaneous magnetization with
the variation of temperature is calculated. The quantitative phase diagrams
are given for ferromagnetic and antiferromagnetic states and qualitative phase
diagrams are shown for mixed states. The roles played by sub-spin quantum
number values, four exchange parameters and single-ion anisotropy are studied.
The research gives us a comprehensive understanding of the magnetic systems
with internal spin fluctuation.

1. Introduction

The Heisenberg exchange model is famous as it describes magnetic systems very well. Usually,
there is one spin at each lattice site and the nearest neighbour interaction is determined by the
inner product of the spins. There is no more complex structure in each lattice site. Recently,
the spin fluctuation in lattice sites has been noticed. For transition metal elements, the 3d
energy level splits due to the interaction of crystal fields. Often, the 3d orbitals split into
two energy levels, i.e. double degenerate eg orbitals and triple degenerate tg orbitals under
cubic and octahedral crystal fields. It is possible that spins can occupy both the split orbitals.
Experimentally, a Co3+ ion shows such a behaviour [1]. Band structure calculations show
that the electrons can indeed distribute in both eg and tg orbitals to form a high-spin state [2].
Although the higher-spin states in experiments are due to thermo-excitation, it is interesting
to study the model that there are more than one spin in each lattice site.

Xia et al [3] thought that the total atom spin was composed of two spins Sd and St

contributed by the double and triple states. Based on this consideration, they suggested a
model Hamiltonian to mimic the spin fluctuation inside an atom in transition metal elements.
This was an extended Heisenberg Hamiltonian in which there are two sub-spins in each lattice
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site, which, hereafter, will be called a two-spin-per-site Heisenberg Hamiltonian (TSPSHH).
They studied the spontaneous magnetization and susceptibility of ferromagnetism described
by such a Hamiltonian by the many-body Green function method. Jiang et al [4] added a
uniaxial anisotropy term to study its effect on the system, especially the shift of Curie point, by
mean-field theory (MFT). Both of the works merely studied the ferromagnetic state. However,
because of the existence of two sub-spins in one lattice site, the possible states can be very
complicated.

In the usual Heisenberg Hamiltonian, the magnetic state is mainly determined by two
factors: the spin quantum number S in each site and the exchange interaction J between
the nearest neighbouring sites. In the case that the spin quantum number S on every site is
the same, the phase diagram is simple. Below the order–disorder transition temperature, the
system is either ferromagnetic when J < 0 or antiferromagnetic when J > 0. In the system
described by TSPSHH, we have the following factors to be considered: the spin quantum
number of the two sub-spins (Sd , St ) in each site and the four exchange interactions between
them. The possible states are determined not only by the relative orientation of neighbouring
spins but also the relative orientation of the sub-spins in the one site. Recently, we [5] have
found there were two remarkable features of TSPSHH due to the interactions between the spins
in one site. One is that the system can show magnetism in an intermediate temperature range
between 0 K and the order–disorder transition point, which can be either ferromagnetism or
antiferromagnetism. The other is that a transition can occur below the order–disorder transition
point. To have a clearer view of such a system, a more systematic study is needed.

Because there are two sub-spins in each site, there are six possible states. For the sake
of convenience, we draw the six possible states in figure 1. States A and B are ferromagnetic
and states C and D are antiferromagnetic, where B and D states may show nonmagnetism if
the sub-spin quantum numbers are the same. E and F represent mixed states. Here the states
mean the situations under the order–disorder transition temperature. Which state the system
shows is determined by the competition of the two sub-spins and four exchange parameters.
This paper is intended to thoroughly study the system described by TSPSHH to provide a
comprehensive understanding of the Hamiltonian. A quantitative phase diagram is given for
the ferromagnetic and antiferromagnetic cases, and a qualitative phase diagram is given for
the other cases. The effect of a single ion is also discussed.

2. Hamiltonian and formula

The model assumes a simple cubic (sc) lattice. Because our discussion involves the
antiferromagnetic case, the lattice is divided into two sub-lattices. Assuming that Sd and
St are sub-spin quantum numbers in the d state and t state, respectively, in one site, the
TSPSHH is

H = −
∑

(ia, jb)

( Sd
ia St

ia ) ·
(

J1 J3

J3 J2

) (
Sd

jb

St
jb

)
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Figure 1. Possible states. In each state, the upper line means sub-spin Sd and the lower line means
sub-spin St . The length of the arrows does not mean the dimension of the magnetization.

The first term is Heisenberg exchange between the nearest neighbouring sites. J1 and J2

are direct exchange and J3 is cross exchange between neighbouring sub-spins Sd and St ,
respectively. The next two terms are the intra-site exchange interaction between the two
sub-spins. J0 is on-site exchange. The last two terms represent single-ion anisotropy [4]. In
equation (1), the subscripts a and b label the two sub-lattices and the summation (ia, jb) means
that the summation is taken over all the nearest neighbour pairs. In this paper the sub-spin
quantum numbers for the two sub-lattices are taken as the same, that is to say, Sd

a = Sd
b = Sd

and St
a = St

b = St . The statistical averages of the sub-spin operators are 〈Sdz
a 〉, 〈Sdz

b 〉, 〈Stz
a 〉

and 〈Stz
b 〉, respectively. The magnetizations of the two sub-lattices are 〈Sz

a〉 = 〈Sdz
a 〉 + 〈Stz

a 〉
and 〈Sz

b〉 = 〈Sdz
b 〉 + 〈Stz

b 〉. We let the exchange parameters be dimensionless as in [3–5].
The method we use is the many-body Green function theory which has long been used to

treat the Heisenberg exchange model [3, 6–8]. The retarded Green functions or double-time
Green functions are, according to Bogolyubov and Tyablikov [9], as follows:

Gi j(t − t ′) = 〈〈Ai ; B j〉〉 = −iθ(t − t ′)〈Ai B j − B j Ai〉, (2)

where the subscripts i , j label lattice sites. The Green function is Fourier time transformed
and we have the equation of motion:

ω〈〈Ai ; B j〉〉 = 〈[Ai , B j ]〉 + 〈〈[Ai , H ]; B j〉〉. (3)

Then the Green function is further Fourier transformed in three-dimensional real space:

G jk = 1

N

∑
k

g(k)eik·(i−j). (4)
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The bold lower case letter k represents wavevectors. The integration of the wavevector k is
in three dimensions. Now the Green function g is a function of wavevector k and frequency
ω = ω(k). There is a well-known spectral theorem [6, 10] to allow one to calculate the
statistical average of the product of the operators:

〈B j Ai〉 = i

2π N

∑
k

eik·(i−j)

∫
dω

eβω − 1
[g(k, ω + i0+) − g(k, ω − i0+)]. (5)

This formula helps us to calculate the magnetization of each sub-lattice. In considering single-
ion anisotropy, Anderson–Callen’s decoupling [11] is employed. Frobrich et al [12] showed
that this decoupling was a comparatively good approximation.

In this paper, the operator A is taken as A = Sd+
a , Sd+

b , St+
a , St+

b . If we denote (Sd+
a , Sd+

b ,
St+

a , St+
b ) = (S+

1 , S+
2 , S+

3 , S+
4 ), or simply A = S+

α , α = 1, 2, 3, 4, then a set of linear equations
is obtained: ∑

λ

(ωλδαλ − Pµλ)gλβ = 〈[S+
α , Bβ]〉. (6)

The elements of the matrix P are given in the appendix. To solve equations (6), one should
first find the eigenvalues ωλ and corresponding eigenvectors Uλν of the matrix P by solving∑

λ

(ωλδµλ − Pµλ)Uλν = 0. (7)

Then the solution of equations (6) is expressed by

gαβ =
∑
τ,λ

Uατ U−1
τλ

ω − ωτ

〈[S+
λ , Bβ]〉, (8)

where U−1 is the inverse matrix of U . Employing the spectral theorem equation (5), we have

〈Bβ S+
α 〉 =

∑
τ,λ

Uατ U−1
τλ

eβωτ − 1
〈[S+

λ , Bβ]〉. (9)

If we choose Bβ = (Sz
β)n S−

β and define

Rα = 1

N

∑
k

∑
τ

Uατ U−1
τα

eβωτ − 1
, α = 1, 2, 3, 4, (10)

the statistical averages of the spin operators 〈Sz
α〉 can be evaluated by the following formula [13]:

〈Sz
α〉 = (Sα − Rα)(1 + Rα)2Sα+1 + (1 + Sα + Rα)R2Sα+1

α

(1 + Rα)2Sα+1 − R2Sα+1
α

, α = 1, 2, 3, 4, (11)

where we denote spin averages (〈Sdz
a 〉, 〈Sdz

b 〉, 〈Stz
a 〉, 〈Stz

b 〉) = (〈Sz
1〉, 〈Sz

2〉, 〈Sz
3〉, 〈Sz

4〉) and the
sub-spin quantum numbers (Sd

a , Sd
b , St

a , St
b) = (S1, S2, S3, S4).

These equations are self-consistent equations. In calculation, an initial state, composed by
a set of magnetizations {〈Sz

α〉}, are put into the equations to produce the resultant magnetization.
The iteration goes on until convergence is reached. If the calculation does not converge or the
resulting statistical average is larger than the spin quantum number, e.g. |〈Sz

α〉| > Sα , we say
that the system is frustrated. That means that, under some parameters, there is no stable state.

Apparently, when 〈Sdz
a 〉 = 〈Sdz

b 〉 and 〈Stz
a 〉 = 〈Stz

b 〉, the system is ferromagnetic and goes
back to the case studied by Xia et al [3]. We first retrieve all of Xia et al’s [3] results by the
above formula.
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Figure 2. Phase diagrams involving states A, B, C and D with parameters (a) J1 > 0, J2 > 0 and
(b) J1 < 0, J2 < 0. The associated parameters are listed in table 1. The broken lines are only to
show that the full line is through the origin.

3. Results and discussion

3.1. The states without single-ion anisotropy

First, let us discuss the case of D0 = 0.

3.1.1. Ferromagnetic states. If J1 > 0, J2 > 0 and J3 = J0 = 0, then Sd
a is parallel to Sd

b
and St

a parallel to St
b. The system can be either in state A or B. It will be in state A if both

J3 and J0 are positive, and will be in state B if both J3 and J0 are negative. Now suppose
that the signs of J3 and J0 are opposite: the state will then be determined by the difference in
strengths of these two parameters. The phase diagram is calculated for parameters J3 and J0,
as in figure 2(a). There is a line separating the two states A and B. Above the line the state is
A, and the other side is state B. The boundary line in figure 2(a) can be expressed by

J3 = − 1
6 J0. (12)

The parameters associated with the phase diagram are listed in table 1. It is seen that, if we
change the sub-spin values and interactions J1 and J2, the phase diagram remains unchanged.
The boundary line is uniquely determined by the competition between J3 and J0, independent
of other factors.

Usually both sub-spins have identical Curie points due to the cross and on-site exchanges,
i.e. the state A with J3 = 0 and J0 = 0.6, as shown by the thinner lines in figure 3. However,
for the states very much closer to the boundary line, the Curie points for the two sub-spins
are not the same if either direct exchanges or sub-spin values of them are different. When we
take the parameters as J3 = −0.99 and J0 = 0.6, which is a state A close to the boundary
line in figure 2(a), the results are depicted in figure 3 as thicker curves. If the sub-spin values
are the same, Sd = St , but their direct exchange interactions are different, say J1 > J2, the
magnetization of the sub-spin with less direct exchange becomes zero rapidly, see figure 3(a).
If the direct exchange interactions are the same, J1 = J2, but the sub-spin values are different,
say Sd > St , the magnetization of the smaller sub-spin has a lower Curie point, as shown in
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Figure 3. Spin averages versus temperature. The state is A so that the two sub-lattices are identical.
J1 = 1, J0 = 0.6. (a) J2 = 0.5. In this case, the two sub-spin quantum numbers are same, but the
direct exchange between St is less than that of Sd , J1 > J2. (b) J2 = 1. In this case, the two direct
exchanges are the same, J1 = J2, but Sdz > Stz . Thin curves are for J3 = 0, while thick curves
are for J3 = −0.99, a state very much closer to the boundary line in figure 2(a).

figure 3(b). In both cases, if the parameters, say J3, are varied to leave the boundary curve, the
lower Curie point will rise and the thicker curves in figure 3 will tend towards the thinner lines.

The fact that, at the boundary line, the two sub-spins have their own Curie points reveals
that their behaviour is determined by their own direct exchange, independent of other factors,
that is to say, the cross and on-site exchanges are negligible. Hence along the boundary line
J3 and J0 counteract and the synthesized effect is nearly zero. Because the effect of J1 and J2

(both being positive) is to make neighbouring spins parallel, J3 and J0 should have opposite
signs to counteract each other. So the slope of the boundary line in figure 2(a) is negative. At
the line, the ratio |J0/J3| is 6. That means that one share of on-site exchange can counteract six
shares of cross exchange interactions. Compared to the cross exchange, the on-site exchange
plays a more important role. Since along the boundary line, the effect of cross and on-site
interactions are negligible, the order–disorder transition temperature reaches its lowest value,
as shown in figures 4 and 5.

Figure 4 shows the curves of Tc versus J3 for parameters J1 = 1, J2 = 0.5 and J0 = 0.2.
It is seen that, under the same exchange strengths, larger sub-spin quantum numbers lead to
larger Tc. On the other hand, under the same sub-spin quantum numbers, larger exchange
strengths lead to larger Tc. The appearance of intersecting points P1 and P2 can be analysed
as follows. When J3 = 0 and J0 = 0, the critical point of the system with spins (1/2, 3/2) is
smaller than the system with spins (1, 1/2). This is because the critical point is mainly subject
to the larger direct coupling when the cross exchange is absent. With the same direct coupling,
the larger spin value system should have a higher critical point. When JP1 < J3 < JP2, the
cross exchange is not strong enough to change this situation. As J3 is large enough, the cross
exchange becomes dominant and the critical point is subject to the larger total spin. The critical
point is determined by the competition of the exchange J3 and J0 when the spin values and the
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Figure 4. Critical point Tc versus cross exchange interaction J3. The other parameters are: J1 = 1,
J2 = 0.5 and J0 = 0.2. The figures in parentheses are the two sub-spin quantum numbers. Note
that the lowest Tc values are at the positions where J3 is about −0.033. As a comparison, we also
depict the results of MFT [4] as broken curves.
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Figure 5. Critical point Tc versus cross exchange interaction J3 to see the positions of the valleys
depending on the J0 value and the effect of single-ion anisotropy. The other parameters are: J1 = 1,
J2 = 0.5. As D0 = 0, the valleys are at the positions described by J0 = − 1

6 J3, i.e. the boundary
line in figure 2(a). As D0 = 0.02, the valleys move leftward slightly.

coupling parameters J1 and J2 are fixed. We also copy the results by MFT [4]. It is obvious
that the MFT overestimates the Curie point.

We call the position where the Tc has its lowest value as J3m . Note that, in figure 4, J3m

is not zero, but is at the position J3m = −0.033. This is because, J0 = 0.2, not zero. If
J0 = 0, the valley is at the position J3 = 0, see figure 5. The full curves in figure 5 show the
Tc − J3 curves for five J0 values. The valleys of Tc for J0 = ±1, ±0.6, 0 are at the positions
J3m = ∓0.166, ∓0.1, 0, which are along the boundary line of figure 2(a).

Note that in either state A or B, the system is ferromagnetic. In [4], the cases with
parameters J1 = 1, J2 = 0.5 and J0 = 0.2 and J3 < 0, which are state B here, were thought to
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Table 1. Parameters that the phase diagrams in figure 2 have.

(Sd , St ) J1 = 1, J2 = 1 J1 = 1, J2 = 0.5 J1 = −1, J2 = −1 J1 = −1, J2 = −0.5

(1/2, 1/2) Figure 2(a) Figure 2(a) Figure 2(b) Figure 2(b)
(1, 1/2) Figure 2(a) Figure 2(a) Figure 2(b) Figure 2(b)
(1, 1) Figure 2(a) Figure 2(a) Figure 2(b) Figure 2(b)
(3/2, 1) Figure 2(a) Figure 2(a) Figure 2(b) Figure 2(b)

be antiferromagnetic. In state B, the spin orientation of neighbouring sites is the same. On the
other hand, for antiferromagnetic cases, the spins of neighbouring sites should be antiparallel
as state C or D, so that the lattice must be treated by dividing it into two sub-lattices. The
condition that the system be antiferromagnetic is that at least one of the direct exchanges must
be negative.

For the case of state B when Sd = St , J1 = J2, the total magnetization is zero and the
system will not exhibit magnetism at any temperature. However, if Sd = St but J1 �=J2,
the system will still be ferromagnetic. In figure 2 of [5], we showed such a case. At
zero temperature, the two sub-spins are antiparallel to each other and the system will not
exhibit magnetism. As temperature increases, the sub-spin with larger direct exchange has
larger magnetization. Therefore, the net magnetization is not zero and the system manifests
ferromagnetism until the Curie point.

3.1.2. Antiferromagnetic states. If J1 < 0, J2 < 0 and J3 = J0 = 0, then Sd
a is antiparallel to

Sd
b and St

a is antiparallel to St
b. The system can be in either state C or D. As the cross exchange

and on-site exchange become nonzero, the competition of the two parameters determines the
state of the system. The phase diagram is calculated as in figure 2(b). There is also a line
separating the states C and D. Above the line is state D, and the other side is state C. The
boundary line in figure 2(b) can be expressed by

J3 = 1
6 J0. (13)

Because the effect of J1 and J2 (both being negative) now is to make neighbouring spins
antiparallel, J3 and J0 should have the same sign to counteract each other, so that the slope
of the boundary line is positive. Still, six shares of cross exchange can compete to one share
of on-site exchange. The parameters associated with the phase diagram are listed in table 1.
Again it is seen that, if we change sub-spin values and interactions J1 and J2, the phase diagram
is unchanged. The boundary line is uniquely determined by the competition between J3 and
J0, independent of other factors. Figures 2(a) and (b) are so similar that one can change the
former to be the latter by the following simple manipulations. The slope of the boundary line
is changed from negative to positive, and state A is replaced by state D and state B by state C.
Subsequently, the analysis of antiferromagnetic states is similar to that of the ferromagnetic
states. Having analysed ferromagnetic states in detail, the understanding of antiferromagnetic
states is relatively simple. We merely state the conclusions.

Along the boundary line in figure 2(b), the cross and on-site exchanges counteract each
other. Close to the line, the two sub-spins have their own Curie point as if they are independent
of each other. The sub-spin with smaller spin quantum number or weaker direct exchange will
have a lower Curie point. However, if the parameters J3 and J0 are chosen such that they are
far away from the boundary line in figure 2(b), the two sub-spins will possess one common
Curie point. This discussion is similar to that for figure 3.

Figure 6 shows the curves of Tc versus J3 for parameters J1 = 1, J2 = 0.5 and J0 = 0.2.
Under the same exchange strengths, larger sub-spin quantum numbers lead to larger Tc.
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numbers. Note that the lowest Tc values are at the positions where J3 is about 0.033.
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Figure 7. Critical point Tc versus cross exchange interaction J3 to see the positions of valleys
versus J0 value and the effect of single-ion anisotropy. The other parameters are: J1 = −1,
J2 = −0.5. As D0 = 0, the valleys are at the positions described by J0 = 1

6 J3, i.e. the boundary
line in figure 2(b). As D0 = 0.02, the valleys move rightwards slightly.

On the other hand, under the same sub-spin quantum numbers, larger exchange strengths
lead to larger Tc. The feature is the same as in figure 4. Now the lowest Tc value is at the
position J3m = 0.033. This is because the slope of the boundary line in figure 2(b) is positive.
If J0 = 0, the valley is at the position J3 = 0, see figure 7. The full curves in figure 7 show the
Tc − J3 curves for five J0 values. The valleys of Tc for J0 = ±1, ±0.6, 0 are at the positions
J3 = ±0.166, ±0.1, 0, respectively, which are along the boundary line in figure 2(b).

For the case of state D when Sd = St and J1 = J2, the total magnetization is zero and
the system will not exhibit magnetism at any temperature. However, if Sd = St but J1 �=J2,
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the system will still be antiferromagnetic. As has been shown in figure 3 of [5], there can
occur a case that the system exhibits antiferromagnetism in the intermediate range between
zero temperature and the Curie point.

3.1.3. Mixed states. The states E and F are substantially the same. For convenience of
discussion, we still distinguish them separately. If J1 > 0, J2 < 0 and J3 = J0 = 0, then Sd

a
is parallel to Sd

b and St
a is antiparallel to St

b. The system is of state E. When cross exchange
and on-site exchange become nonzero, the cases become complicated. In table 2, we post the
calculated states, depending on the parameters for the sub-spins (Sd , St ) = (1, 1/2).

In table 2, E–A(B) means that at low temperature near to zero the state is E. At some
temperature the system transits to state A(B). The state A(B) then lasts until the Curie point.
Figures 8 and 9 show two examples. We call this transition the intermediate transition because
it occurs in the intermediate temperature range between zero and the order–disorder transition.
We have given a simple physical explanation of the occurrence of the intermediate transition
by means of the concept of molecular field (MF) [5].

N–A(B) in table 2 means that, at low temperature near to zero, there is no solution.
Here, because the effect of the four exchange parameters contrast each other, the system does
not have a stable state. When temperature increases, the thermal motion is strong enough.
Correspondingly, the effect of exchanges seems ‘weaker’ and the system can hold a stable
state. Here we see that the ‘strength’ of thermal motion plays a role to overcome the frustration
of the system.

Based on table 2, we depict the qualitative phase diagram in figure 10(a). Around the line
J3 = 0, the state is E–B when J0 < 0 and is E–A when J0 > 0. The full boundary line has
the same slope, −1/6, as in figure 2(a). Above the dotted line the state is A and below the
chain curve it is state B. The positions of these two boundary lines depend on direct exchanges,
but the slopes of them are believed to be the same as the full line. From table 2, when the
strengths of the two direct exchange J1 and J2 are closer, the broken line in figure 10(a) will
move upwards and the chain curve will move downwards. That is to say, the areas of N–A and
N–B will extend. Since J1 and J2 have different signs, any pair of on-site and cross exchanges
lead to the opposite effect. The closer the strengths of the two direct exchanges, the easier for
the system to be frustrated at low temperature, as illustrated by table 2. If the sub-spins are
varied, the phase diagram remains qualitatively unchanged.

If J1 < 0, J2 > 0 and J3 = J0 = 0, then Sd
a is antiparallel to Sd

b and St
a is parallel to

St
b. The system is of state F. When cross exchange and on-site exchange become nonzero, the

qualitative phase diagram is figure 10(b). In order to get the phase diagram, one only needs
to change the slope of the boundary lines in figure 10(a) from −1/6 to 1/6 and replace the
letters A, B and E by D, C and F, respectively. The procedure is almost the same as that from
figures 2(a)–(b). The discussion of F-related states is similar to the above E-related states.

Comparing figure 8 with figure 9, both have the same exchange strengths, but the former
has a larger sub-spin Sd and its transition temperature TE–B is higher than TF–D of the latter.
It shows that a smaller sub-spin is more easily affected by thermal motion. Larger sub-spins
result in a higher order–disorder transition, but do not necessarily lead to a higher intermediate
transition point. In figures 8(a) and 9(a), the transition points are 1.43 and 1.61, respectively.

In figure 9, the total magnetization of sub-lattice b, 〈Sz
b〉 = 〈Sdz

b 〉+〈Stz
b 〉 (short broken

curve), is positive near zero temperature and flips under the transition point TF–D. This flip
does not cause a F–D transition. Only the flip of 〈St

b〉 (broken line) causes the F–D transition.
The flip of 〈Sz

b〉 is due to the competition of exchange parameters. If we choose J2 = 0.5 and
J0 = −0.5, while keeping the other parameters in figure 9 unchanged, the 〈Sz

b〉 will be always
negative under the order–disorder transition temperature and will not show a flip.
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Figure 8. Spin averages versus temperature. (a) D0 = 0, TE–B = 1.43, Tc = 5.02; (b) D0 = 0.02,
TE–B = 2.08, Tc = 5.07. At E–B transformation temperature, TE–B, the magnetization has a jump,
indicating a first-order transformation. The effect of single-ion anisotropy is to increase TE–B and
the order–disorder transition point.

Table 2. States of sub-spin quantum numbers (Sd , St ) = (1, 1/2) under some exchange parameters.

J0 = −0.9 −0.6 −0.3 0 0.3 0.6 0.9

J3 J1 = 1, J2 = −0.5

0.9 N–A A A A A A A
0.6 N–A N–A A A A A A
0.3 N–A N–A N–A N–A N–A N–A N–A
0 E–B E–B E–B E E–A E–A E–A

−0.3 B N–B N–B N–B N–B N–B N–B
−0.6 B B B B N–B N–B N–B
−0.9 B B B B B B B

J3 J1 = 1, J2 = −1

0.9 N–A N–A N–A N–A A A A
0.6 N–A N–A N–A N–A N–A N–A A
0.3 N–A N–A N–A N–A N–A N–A N–A
0 N–B E–B E–B E E–A E–A E–A

−0.3 N–B N–B N–B N–B N–B N–B N–B
−0.6 B N–B N–B N–B N–B N–B N–B
−0.9 B B B N–B N–B N–B N–B

3.2. The effect of single-ion anisotropy

In [4], the anisotropic parameter D0 was chosen as the same magnitude order of exchange
parameters J . However, usually the single-ion anisotropy strength is believed to be two orders
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Figure 9. Spin averages versus temperature to show F–D transformation. (a) D0 = 0, TE–D
= 1.61, Tc = 2.67; (b) D0 = 0.02, TF–D = 1.82, Tc = 2.73. At F–D transformation temperature,
TF–D, the magnetization has a jump, indicating a first-order transformation. The effect of single-ion
anisotropy is to increase TF–D and the order–disorder transition point.
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Figure 10. Qualitative phase diagrams when the parameters are (a) J1 > 0 and J2 < 0 and
(b) J1 < 0 and J2 > 0. The broken lines are only to show that the full line is through the origin.

of magnitude less than the direct exchange interaction [12, 15, 16]. In this paper, we take
D0 = 0.02. In figure 5, it is observed that the valleys of the curves Tc versus J3 shift leftwards
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slightly due to the anisotropy. The shift can be explained qualitatively as follows. When
J3 > J3m , the state is A, see figure 2(a). The sub-spins are parallel. The single-ion anisotropy
strengthens this orientation, which leads to a stronger ability to overcome thermal movement.
As a result, the Curie point rises. When J3 < J3m , the state is B. The two sub-spins in one site
are antiparallel to each other. A single-ion anisotropy means a stronger force, making them
antiparallel and, as a result, the total spin average goes to zero with temperature more quickly
and Tc decreases. Therefore, the left branch of the valley in the curves descends and the right
branch rises so that the valley moves leftwards.

The discussion of the single-ion effect in figure 7 is similar to that in figure 5. When
J3 < J3m , the state is C with parallel intra-site sub-spins, and when J3 > J3m , the state is D
with antiparallel intra-site sub-spins. The effect of single-ion anisotropy is to increase Tc of
the former and to decrease Tc for the latter case, so that the valleys of the curves Tc versus J3

shift rightwards slightly.
The single-ion anisotropy slightly lifts the order–disorder transition temperature, see

figures 8 and 9 as examples. In figure 8(a), the order–disorder transition temperature is 5.02
as D0 = 0. It becomes 5.07 as D0 = 0.02, see figure 8(b). In figure 9, the order–disorder
transition temperature is 2.67 as D0 = 0 and becomes 2.73 as D0 = 0.02.

The anisotropy also increases the E(F)–X(A, B, C, D) transition temperature, as can be
seen from figures 8 and 9. In figure 8, the E–B transition point TE–B is increased from 1.43 to
2.08 due to single-ion anisotropy. In figure 9, the F–D transformation point TF–D is increased
from 1.61 to 1.82. Calculations show that the larger the sub-spins, the more the increase of
TE(F)–X.

By the concept of MF [5], the sub-spin St
b, as J3 for instance, is subjected to two MF: on-

site MF (OSMF) J0〈Stz
b 〉 and nearest neighbour MF (NNMF) 6J2〈Stz

b 〉. At zero temperature,
the NNMF prevails. With the increase of temperature, 〈Stz

b 〉 drops more quickly because
|J2| < J1. At temperature TE(F)–X, transition occurs. Now the existence of single-ion
anisotropy strengthens both MFs. The NNMF will last to a higher temperature before being
overwhelmed by the OSMF. Thus the intermediate transition temperature TE(F)–X rises.

4. Summary

The possible magnetic states of TSPSHH are investigated in detail by the many-body Green
function method. The magnetic state is determined by the competition of sub-spin quantum
numbers and four exchange parameters. Generally speaking, larger spin values and stronger
exchanges lead to higher order–disorder transitions. The introduction of single-ion anisotropy
increases the order–disorder transition point and intermediate transition point. Here the effect
of internal spin fluctuation is obvious as it results in the intermediate transition. The quantitative
phase diagrams are given for ferromagnetic and antiferromagnetic states and qualitative phase
diagrams are shown for mixed states. The research gives us a comprehensive understanding
of the magnetic systems with internal spin fluctuation. Although we only discuss the case for
(Sd

a , St
a) = (Sd

b , St
b), the case for (Sd

a , St
a) �= (Sd

b , St
b) can be studied in the same way.
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Appendix

The elements of the matrix P in equation (6) are

a11 = z(J1〈Sdz
2 〉 + J3〈Stz

2 〉) + D(ϕs1〈Sdz
1 〉 + 2〈Stz

1 〉) + J0〈Stz
1 〉,

a12 = −J1〈Sdz
1 〉γk, a13 = −J0〈Sdz

1 〉, a14 = −J3〈Sdz
1 〉γk,

a21 = −J1〈Sdz
2 〉γk,

a22 = z(J1〈Sdz
1 〉 + J3〈Stz

1 〉) + D(ϕs2〈Sdz
2 〉 + 2〈Stz

2 〉) + J0〈Stz
2 〉,

a23 = −J3〈Sdz
2 〉γk, a24 = −J0〈Sdz

2 〉,
a31 = −J0〈Stz

1 〉, a32 = −J3〈Stz
1 〉γk,

a33 = z(J2〈Stz
2 〉 + J3〈Sdz

2 〉) + D(ϕt1〈Stz
1 〉 + 2〈Std

1 〉) + J0〈Sdz
1 〉,

a34 = −J2〈Stz
1 〉γk,

a41 = −J3〈Stz
2 〉γk, a42 = −J0〈Stz

2 〉, a43 = −J2〈Stz
2 〉γk,

a44 = z(J2〈Stz
1 〉 + J3〈Sdz

1 〉) + D(ϕt2〈Stz
2 〉 + 2〈Stz

2 〉) + J0〈Sdz
2 〉.

Here z is the nearest neighbour number of one site and γk = ∑
eik·δ , where δ means the

position vector of the nearest neighbours.
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